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Chapter 6 

Optical dating 

 

6.1 Introduction 

The utility of optical dating (Huntley et al., 1985) lies in its potential to directly, accurately and precisely date sedimentary 

events where most other chronometric methods falter owing to limitations of context, material, age range and/or 

calibration. An optical age estimate should directly date the point of sediment burial. There is an increasing body of 

independent evidence that verifies this relationship (Murray and Olley, 2002). For certain periods, the maximum precision 

of optical ages (c. 5%) can be comparable if not superior to that of other chronometric methods, including radiocarbon. 

The datable signal is typically associated with ubiquitous and durable natural mineral grains. Its datable range is 

considerable, from as little as 50 years to as much as 750 ka and possibly beyond (Murray and Olley, 2002; Wang et al., 

2006). Although it is necessary to calibrate the time dependent signal, this process does not generate multiple age 

estimates resultant of calibration plateaux that can afflict radiocarbon dating of certain periods. Aitken (1998) and Bøtter-

Jensen et al. (2003) offer a detailed review of optical dating. 

 

The fundamental requirements of any dating technique are two-fold; a time dependent signal and knowledge of this 

signal’s size at the event to be dated. In Optical dating, the chronometric signal (Optically Stimulated Luminescence, 

OSL) is reset through exposure to sunlight and/or raised temperature. The datable event is the removal of these agents 

(e.g. through burial). The signal then accumulates over time as a function of low level, natural radiation exposure 

emanating from surrounding sediment as ,, particles and the cosmos as electrons and muons. The luminescence 

signal is equivalent to a dosimeter providing a measure of total dose absorption (De). This signal is converted to a 

chronometer by estimating the rate of absorption (Dr; Fig. 1), so that 

 

Age (ka) = Mean Equivalent Dose (De; in Gy) 

                    Mean Dose Rate (Dr; in Gy.ka-1) 

 

Optical dating has been deployed to directly date Broom’s sediment sequence, defining a minimum age for the earliest 

incorporated artefacts and thus of earliest hominin occupation in the surrounding area during the Lower Palaeolithic. 

Together with optical dating of sites at Kilmington and Chard, these ages offer the first chronometric insight to the Axe 

Valley formation. This chapter outlines the findings from Toms et al. (2005; 2008), from which full details of optical dating 

at these sites can be acquired. 

 

6.2 Methodology 

6.2.1 Sampling 

A total of eighteen samples were collected from the Middle Beds and Upper Gravels at Broom (Fig. 2, Table 1); the 

Lower Gravels remained inaccessible during the sampling period. Fifteen samples were obtained from matrix-supported 

units, extracted within opaque tubing or as lithified blocks to preserve the light sensitive datable signal. A further three 

samples were acquired from clast-supported material, excavating sediment into a light-tight bag 2 hrs after sunset with 

the aim of harnessing the chronometric signal residing within interstitial sands. A further ten samples were obtained from 

matrix-supported material using opaque tubing at Kilmington and Chard (Table 1).    

 

6.2.2 Preparation 

This element focussed on the isolation of quartz in the fine silt (5-15 m) or fine sand (90-180 m) range. The utility of 

this mineral in optical dating lies in the stability of its datable signal over the mid to late Quaternary period, predicted 

through isothermal decay studies (e.g. Smith et al., 1990) and evidenced by optical age estimates concordant with 

independent chronological controls (e.g. Murray and Olley, 2002). To preserve the time dependent signal, preparation 



was conducted under subdued red light. Following removal of sunlight exposed material, the samples were dried at 40ºC 

and then subjected to acid (10% HCl) and alkali (15% H2O2) digestion to remove carbonate and organic components. 

Fine sand was obtained by sieving and fine silt by acetone sedimentation. The analytical fraction was selected on the 

basis of the greatest mass. Fine sand samples were immersed in 40% HF for 1 hr to etch away the -irradiated rind and 

to degrade feldspars. 10% HCl was added to remove acid soluble fluorides. Samples were then resieved to remove 

feldspars and density separated at 2.68 g.cm-3 to segregate quartz from heavy minerals. Fine silt samples were placed in 

35% H2SiF6 for 2 weeks (Jackson et al., 1976; Berger et al., 1980) and 10% HCl for 1 hr to digest all but quartz and a 

minor component of heavy minerals. Aliquots (1.5-5 mg) were mounted on 12 aluminium discs for luminescence 

measurement and calibration of each sample. 

 

6.2.3 De measurement 

All natural sedimentary minerals exhibit marked inter-grain variability in luminescence per unit dose. Owing to this 

variation in sensitivity, the estimation of De acquired since burial requires calibration of the natural signal using known 

amounts of laboratory dose. De values were quantified using a single-aliquot regenerative-dose (SAR) protocol, similar to 

that outlined by Murray and Wintle (2000). This process was facilitated by a Risø TL-DA-15 irradiation-stimulation-

detection system (Markey et al., 1997). Optical signal stimulation was provided by a tungsten halogen lamp, filtered to 

broad blue-green light. Stimulation occurred whilst aliquots were held at 160C (Broom only) or 125C, principally to 

enhance the signal to noise ratio. Optically stimulated UV emissions from the quartz aliquots were detected by an EMI 

9235QA photomultiplier. Aliquot irradiation was conducted using a calibrated 1.48 GBq 90Sr/90Y  source. The presence 

of contaminant feldspar grains was assessed through infrared stimulation (Hütt et al., 1988). Significant IR stimulated 

luminescence was detected from only GL06012, qualifying the presence of feldspars and thus for potential for 

anomalous fading of the time dependent signal in this sample (Wintle, 1973). SAR by definition evaluates De through 

measuring the natural signal (Fig. 3) of a single aliquot and then regenerating that aliquot’s signal by using known 

laboratory doses to enable calibration. For each aliquot, up to 6 different regenerative-doses were administered so as to 

image dose response. De values for each aliquot were then interpolated, and associated counting and fitting errors 

calculated by way of exponential plus linear regression (Fig. 3). Preheating aliquots between irradiation and optical 

stimulation was necessary to ensure comparability between natural and laboratory-induced signals. Aliquots were 

preheated at 260C for 10s prior to measurement of natural and regenerated signals. As a result of De preheat 

dependence and dose recovery tests, some samples from Kilmington and Chard were preheated at 240C for 10s 

(Murray and Wintle, 2003; Toms et al., 2008). However, the multiple irradiation and preheating steps that are required to 

define single-aliquot regenerative-dose response leads to signal sensitisation, rendering calibration of the natural signal 

inaccurate. The SAR protocol (Murray and Wintle, 2000) enables this sensitisation between irradiation-preheat steps to 

be tracked and corrected using a test dose; set at 5 Gy preheated to 180C (Broom only) or 220C for 10s. The reliability 

of correction can be quantified by examining the reproducibility of corrected signals from repeat regenerative-doses. The 

majority of aliquots generated a repeat ratio statistically concordant with unity, verifying reliability of sensitisation 

correction. Weighted mean De values were calculated using the central age model outlined by Galbraith et al. (1999) and 

are quoted at 1 confidence (Table 1). 

 

6.2.4 Dr measurement 

Lithogenic Dr values were defined through measurement of U, Th and K radionuclide concentration and conversion of 

these quantities into ,  and  Dr values (Table 1).  and  contributions were estimated from sub-samples by Neutron 

Activation Analysis (NAA) delivered by Becquerel Canada or, where low U (<0.1 ppm) and/or Th (<0.05 ppm) occurred, 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) delivered by the University of Oxford.  dose rates were 

estimated from in situ gamma spectrometry or, where direct measurements were not possible, from NAA or ICP-MS of 

sub-samples. In situ measurements were conducted using an EG&G Nomad portable NaI gamma spectrometer 

(calibrated using the block standards at RLAHA, University of Oxford); these reduce uncertainty relating to potential 



heterogeneity in the  dose field surrounding each sample. For samples from Kilmington and Chard, laboratory-based  

spectrometry was conducted using an Ortec GEM-S high purity Ge coaxial detector system, calibrated using certified 

reference materials supplied by CANMET. These high resolution spectra revealed negligible U-series disequilibrium. 

Estimates of radionuclide concentration were converted into Dr values (Adamiec and Aitken, 1998), accounting for Dr 

modulation forced by grain size (Mejdahl, 1979), present moisture content (Zimmerman, 1971) and, where De values are 

generated from 5-15 m quartz, reduced signal sensitivity to  radiation (a-value 0.050  0.002; Toms, unpub. data). 

Cosmogenic Dr values are calculated on the basis of sample depth, geographical position and matrix density (Prescott 

and Hutton, 1994). 

 

 

6.2.5 Age Calculation and Verification 

The luminescence ages given in Table 1 are the quotient of mean De and Dr values, with associated 1 uncertainties 

reflecting the propagation of systematic and experimental errors. The principal concern in respect of this study is the 

antiquity of the age estimates. Matters of signal saturation and retention, both leading to age underestimation, are of 

relevance. There is limited precedent by which to adjudge accuracy through extrapolation from previous studies. Murray 

et al. (2002) demonstrated that mean De estimates corresponding with high-doses of 200-400 Gy generated ages 

consistent with the last Interglacial and concordant with independent chronological control. Watanuki et al. (2005) 

independently verified optical age estimates back to 500 ka for a Japanese loess sequence. At the level of the Bruhnes-

Matuyama boundary within the Chinese loess-palaeosol sequence, Wang et al. (2006) achieved an optical age coeval 

with the timing of this switch from reversed to normal magnetic polarity at c. 775 ka. However, given that these examples 

represent the near breadth of independently verified, Middle Pleistocene quartz optical age estimates, it is preferable to 

adopt the same approach as these studies rather than extrapolate from them. The caveat is that the Axe Valley formation 

has no chronological controls by which to corroborate the optical ages presented here. Despite this dearth of extrinsic 

verification, there exists a credible intrinsic gauge. Convergent age estimates from stratigraphically equivalent positions 

of divergent Dr values provide a simple, yet powerful intrinsic index of reliability (Toms et al., 2005). Such relationships 

supersede concerns of inaccuracy potentially forced by any one of the variables associated with De and Dr but whose 

influence can be difficult to assess. This fundamental approach requires multiple samples be obtained from equivalent 

stratigraphic units, targeting areas of divergent dosimetry. Dr:De plots (Toms et al., 2005) then readily illustrate the 

occurrence of linear relationships, as well as rapidly communicate the spread of ages within a study (Figs. 4 and 5). This 

assessment of accuracy can be supplemented by Bayesian modelling. Coupling absolute age estimates with knowledge 

of their relative stratigraphic position can quantify the stratigraphic consistency and refine the precision of the optical 

chronology. Bayesian analysis of Broom’s optical ages is presented in Fig. 6. 

 

6.3 Results and Discussion 

The spread of age estimates is illustrated in Figs. 4 and 5 and data detailed in Table 1. At Broom, it is apparent that 

GL03057 to GL03059 (section 14) are significantly younger than all other age estimates and are indeed younger than the 

Middle Pleistocene age inferred from the site’s Lower Palaeolithic assemblage. These younger estimates likely reflec t 

reworked material, possibly resulting from 20th century quarrying. Interstitial sand samples obtained from clast-supported 

material (GL03001 to GL03003, section 9) are considerably older than matrix-supported samples. These extreme ages 

could be a function of partial resetting of the pre-burial signal, incorporation of post-depositionally formed fragments of 

chert and flint within aliquots and/or an underestimation of Dr. These non-conventional samples are the subject of further 

study. Incorporating uncertainties, age estimates from matrix-supported material other than that in section 14 span 209 to 

317 ka for the Upper Gravels and 259 to 326 ka for the Middle Beds. Within Fig. 4 isochrons are fitted to data from the 

Middle Beds and Upper Gravels, discounting that from section14 and the upper unit of section 9 for the reasons given 

above. At 1 confidence, 67% of age estimates are concordant with their respective isochron, at 2, 92% are consistent. 



The significant difference between lower and upper Dr values from each unit and broad statistical consistency of Dr:De 

data with their respective isochron suggests a reasonable level of reliability. 

 

All but one sample (GL06001) from Kilmington and Chard generated age estimates consistent with their relative 

stratigraphic position at each site. GL06001 may have been obtained from a slipped deposit that is in effect 

stratigraphically younger than samples from the lower units. At Kilmington, the deposits span 135 to 336 ka, whilst those 

at Chard range between 86 and 401 ka. Fig. 5 shows De:Dr plots from Kilmington and Chard, illustrating the spread of 

luminescence ages and demonstrating the reliability of the ages from the upper unit where a significant variation in Dr 

was recorded, yet coeval estimates of age were generated. 

 

Fig. 6 details the Bayesian output from Oxcal v3.5 (Bronk Ramsey, 1995; 2001) for the Middle Beds and Upper Gravels 

at Broom based on the optical age and relative stratigraphic position of each sample. Within Bayesian modelling of 

sedimentary succession, phases refer to age estimates forming part of a sedimentary sequence yet without an explicit 

definition of their relative stratigraphic position. Sequences consist of age estimates and/or phases whose relative 

stratigraphic position is known. Age estimates from the Middle Beds were all obtained from section 2 and were therefore 

defined sequentially as their relative stratigraphic position was unambiguous. The Upper Gravels comprise age estimates 

from multiple sections. These sections consist of either a single age estimate (e.g. section 1) or multiple estimates for 

which relative stratigraphic position is known (e.g. section 13). Some complexity exists at section 9; the sand unit has 

three observable horizons into which optical age estimates can be grouped, however their relative position within these 

horizons is ambiguous. Hence, whilst horizons are defined as a sequence, age estimates within each are defined as a 

phase. Age estimates within the Upper Gravels from multiple sections can be considered as forming part of an Upper 

Gravel phase. Bronk Ramsey (1995) suggests an overall agreement index (A) of 60% as a rejection threshold for a 

series of ages. The A value of c. 102% given in Fig. 5 suggests the optical chronology is consistent with the relative 

stratigraphic position of the Middle Beds and Upper Gravels. Further, this modelled data theorises improved estimates of 

precision. At 1 confidence the optical chronology is refined to Middle Bed formation between 324 and 282 ka and Upper 

Gravels between 292 and 205 ka. 

 

From these data, the Lower Gravels formed either before or during the early part of the Marine Isotope Stage (MIS) 9 

interglacial, the Middle Beds between mid MIS 9 and early MIS 8 (glacial) and the Upper Gravels during MIS 8 and MIS 7 

(interglacial). The general synchrony of incision and accumulation of coarse deposits with cool conditions and fines with 

warm conditions broadly typifies the model of fluvial terrace formation (Bridgland, 2000). However, the continued 

accumulation of Upper Gravels into the interglacial of MIS 7 runs counter to this model. 

 

6.4 Conclusions   

Optical dating suggests deposition of the proto Axe is recorded between 86 and 401 ka (MIS 5 to 10). Fluvial 

sedimentation at Broom appears to have been focussed between 209 and 326 ka (MIS 7 to 9). By inference, the undated 

Lower Gravels at Broom containing the first appearance of artefacts at this site suggest the earliest hominin presence 

likely occurred prior to 326 ka, possibly before or in the early part of the interglacial of MIS 9.  These age estimates for 

elements of the Axe Valley Formation are amongst the oldest optical dates published for UK deposits. The apparent 

internal and stratigraphic consistency of the optical chronology, in particular at Broom, is encouraging. However, the 

discrepancy in minimum age reported for the Upper Gravels at Broom with that extrapolated from Bridgland’s (2000) 

model of terrace evolution highlights the tentative nature of a Mid-Pleistocene optical chronology. 
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1  dose rate calculated using radionuclide concentrations determined from ICP-MS assay of combined sub-samples 

2 Siteslocated at approximately 51ºN, 3ºW; Broom, 50 m asl; Chard, 80 masl; Kilmington, 40 m asl 

 

Table 1 Dosimetry, De and age data obtained by multi-grain single-aliquot optical dating of Broom, Kilmington and Chard. 

 

Laboratory 

Code 

Depth 

(m) 

Grain 

size 

(m) 

Moisture 

content  
NaI -spectrometry (in situ) 

 Dr  

(Gy.ka-1) 

Neutron Activation Analysis 

(†Or ICP-MS) 

 Dr 

(Gy.ka-1) 

 Dr 

(Gy.ka-1) 

Cosmic Dr
2 

(Gy.ka-1) 

Total Dr 

(Gy.ka-1) 
De (Gy) Age (ka) 

    K (%) Th (ppm) U (ppm)  K (%) Th (ppm) U (ppm)       

Broom                 

GL02082 5.10 90-125 0.18  0.05 0.72  0.02 6.82  0.22 1.60  0.09 0.54  0.04 1.11  0.06 9.68  0.48 2.41  0.12 - 1.08  0.10 0.09  0.01 1.72  0.11 503.4  27.8 293  24 

GL02083 15.60 125-180 0.17  0.04 1.11  0.02 7.78  0.24 2.48  0.11 0.75  0.06 0.81  0.04 7.32  0.37 1.99  0.10 - 0.81  0.07 0.05  0.00 1.61  0.08 461.5  28.0 287  22 

GL02084 16.50 90-125 0.17  0.04 1.15  0.02 7.15  0.21 2.15  0.10 0.70  0.05 1.10  0.06 6.86  0.34 1.90  0.10 - 0.98  0.09 0.05  0.00 1.73  0.10 483.0  21.0 279  20 

GL02085 2.78 125-180 0.18  0.04 0.85  0.02 4.63  0.19 0.90  0.08 0.42  0.03 0.96  0.05 4.28  0.21 0.80  0.04 - 0.71  0.07 0.13  0.01 1.27  0.08 353.4  21.4 279  24 

GL03001† 1.65 125-180 0.07  0.02 0.15  0.01 1.64  0.10 0.85  0.07 0.19  0.02 0.19  0.01 2.44  0.08 0.58  0.03 - 0.24  0.02 0.16  0.02 0.60  0.03 274.3  18.5 460  38 

GL03002†1 2.12 125-180 0.10  0.03 - - - 0.16  0.02  0.17  0.01 1.80  0.07 0.45  0.02  - 0.19  0.02 0.15  0.02 0.50  0.03 367.8  39.0 739  89 

GL03003† 2.68 125-180 0.11  0.03 0.17  0.01 1.75  0.11 0.87  0.07 0.20  0.02 0.15  0.01 1.17  0.03 0.58  0.02 - 0.19  0.02 0.13  0.01 0.52  0.02 449.8  33.3 870  76 

GL03004 2.66 125-180 0.11  0.03 0.45  0.01 2.85  0.13 1.20  0.08 0.33  0.03 0.73  0.04 4.40  0.22 0.51  0.03 - 0.61  0.05 0.13  0.01 1.08  0.05 288.3  19.1 268  22 

GL03005 2.95 125-180 0.14  0.03 0.60  0.02 4.56  0.16 2.17  0.11 0.52  0.04 0.89  0.04 6.96  0.35 1.14  0.06 - 0.80  0.07 0.13  0.01 1.45  0.07 326.8  17.3 226  16 

GL03006 2.81 125-180 0.14  0.03 0.57  0.02 3.45  0.15 1.45  0.09 0.40  0.03 0.99  0.05 5.80  0.29 1.02  0.05 - 0.83  0.07 0.13  0.01 1.36  0.08 375.9  27.1 277  25 

GL03007 2.96 125-180 0.13  0.03 0.66  0.02 4.10  0.17 1.12  0.10 0.41  0.04 0.83  0.04 4.24  0.21 0.48  0.02 - 0.65  0.06 0.13  0.01 1.19  0.06 324.0  20.8 271  22 

GL03008 0.95 125-180 0.14  0.04 0.84  0.02 4.53  0.16 1.98  0.10 0.54  0.04 0.88  0.04 4.47  0.22 0.99  0.05 - 0.73  0.07 0.18  0.03 1.45  0.07 352.8  18.9 244  18 

GL03009 1.09 125-180 0.14  0.03 0.57  0.02 4.10  0.17 1.95  0.11 0.47  0.04 0.64  0.03 5.53  0.28 1.26  0.06 - 0.63  0.05 0.17  0.02 1.27  0.06 343.0  18.6 270  19 

GL03010†1 15.00 125-180 0.18  0.05 - - - 0.67  0.07 0.94  0.05 7.66  0.38 2.22  0.11 - 0.90  0.09 0.03  0.00 1.61  0.12 380.6  28.0 237  25 

GL03011 16.20 125-180 0.17  0.04 0.95  0.03 7.29  0.27 3.98  0.18 0.83  0.08 1.02  0.05 8.25  0.41 2.24  0.11 - 0.98  0.09 0.03  0.00 1.84  0.10 546.0  44.8 297  29 

GL03057 10.43 5-15 0.27  0.07 1.14  0.03 9.06  0.31 2.82  0.19 0.72  0.08 1.19  0.06 6.90  0.35 1.98  0.10 0.27  0.04 0.96  0.11 0.05  0.00 2.01  0.12 39.8  1.7 24  2 

GL03058 10.65 5-15 0.29  0.07 1.23  0.04 9.12  0.31 3.38  0.20 0.76  0.09 1.62  0.08 13.600.68 1.92  0.10 0.39  0.05 1.27  0.16 0.05  0.00 2.47  0.17 39.6 2.7 20  2 

GL03059 10.81 5-15 0.25  0.06 1.27  0.03 8.46  0.29 3.11  0.18 0.77  0.08 1.22  0.06 6.39  0.32 1.30  0.07 0.22  0.03 0.93  0.10 0.05  0.00 1.98  0.11 57.5  3.6 34  2 

Kilmington                 

GL06001 5.0 125-180 0.18  0.05 0.49  0.02 3.73  0.13 1.69  0.09 0.49  0.02 2.10  0.09 10.26  0.44 2.85  0.14 - 1.68  0.17 0.10  0.01 2.27  0.17 350.2  35.8 154  19 

GL06002 5.0 125-180 0.16  0.04 0.51  0.01 2.83  0.12 1.10  0.07 0.38  0.02 1.33  0.06 6.14  0.27 1.56  0.09 - 1.08  0.10 0.10  0.01 1.55  0.10 480.5  26.6 309  26 

GL06003 2.0 125-180 0.14  0.03 0.57  0.02 3.49  0.16 1.20  0.10 0.44  0.02 1.52  0.07 8.62  0.37 2.42  0.12 - 1.36  0.11 0.15  0.01 1.95  0.12 348.7  28.3 179  18 

GL06004 4.0 125-180 0.06  0.01 0.38  0.02 1.85  0.13 0.87  0.09 0.28  0.01 0.62  0.03 2.07  0.11 0.52  0.04 - 0.53  0.04 0.11  0.01 0.92  0.04 250.6  20.5 273  26 

Chard                 

GL06010 4.3 125-180 0.16  0.04 0.36  0.01 2.28  0.12 1.29  0.08 0.34  0.02 1.27  0.06 6.86  0.29 2.08  0.10 - 1.09  0.10 0.11  0.01 1.54  0.10 268.5  22.0 174  18  

GL06011 2.5 125-180 0.13  0.03 0.30  0.01 2.12  0.10   1.01  0.07 0.29  0.01 0.60  0.03 3.10  0.15 0.95  0.06 - 0.53  0.04 0.14  0.01 0.96  0.05 90.2  6.8 94  9 

GL06012 1.7 125-180 0.14  0.03 0.68  0.02 3.85  0.17 1.62  0.11 0.53  0.02  1.53  0.07 7.23  0.31 1.90  0.09 - 1.28  0.11 0.16  0.02 1.97  0.11 193.7  11.0 98  9 

GL06013 4.5 125-180 0.15  0.04 0.36  0.02 1.82  0.13 0.79  0.08 0.26  0.01 0.99  0.05 2.71  0.13 0.65  0.05 - 0.72  0.07 0.10  0.01 1.09  0.07 298.6  19.2 274  25 

GL06057 6.7 125-180 0.16  0.04 0.18  0.01 1.32  0.08 0.82  0.06 0.20  0.01 0.87  0.04 5.30  0.21 1.30  0.05 - 0.75  0.07 0.08  0.01 1.02  0.07 375.3  24.6 367  35 

GL06058 7.0 125-180 0.15  0.04 0.23  0.01 1.55  0.10 0.67  0.07 0.21  0.01 1.09  0.05 3.90  0.16 1.00  0.04 - 0.84  0.08 0.07  0.01 1.12  0.08 318.3  33.3 284  36 



 

 

 

 

 

 

 

 

 

Fig. 1 Basic principles of optical dating 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L
u

m
in

e
s

c
e

n
c

e
 

Years of natural 

ionising radiation 

Age 

Time dependent 
growth of signal 

Datable event; signal 
reduced to zero by light 

exposure 





Fig. 2 Schematic of stratigraphy of the Broom deposits and position of optical dating samples (listed in descending stratigraphic order). 

 





 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Aliquot 1 sample GL03011, an example of natural optical signal from a multi-grain quartz aliquot (inset) and of 

sensitivity corrected optical response to high doses. The interpolated De value is indicated, the natural signal is denoted 

by an open triangle, regenerative-dose signals by filled diamonds and repeat regenerative-dose response by an open 

diamond.  
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Fig. 4 Bivariation of age parameters for samples from the Middle Beds (open triangles), Upper Gravels (open diamonds) 

and rejected age estimates (filled diamonds). The gradient of lines drawn from the origin to the data point of each sample 

is the reciprocal of sample age; the shallower the gradient, the older the age estimate. Reworked samples and non-

conventional interstitial sand samples are highlighted. The curves shown are fitted to data derived from conventional, 

matrix-supported samples from the Middle Beds (dashed) and Upper Gravels (solid). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Bivariation of age parameters for samples from Kilmington (squares) and Chard (triangles). Isochrons are fitted to 

data derived from samples taken from equivalent stratigraphic units (filled symbols).  
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Fig. 6 Bayesian modelling of accepted optical age estimates within the Middle Beds and Upper Gravels. Filled 

distributions reflect the probability distributions of raw optical age estimates, unfilled represent modelled distributions. 

Agreement indices for each sample are shown next to each sample code. The overall agreement index (Aoverall) 

quantifies the consistency of age estimates with their relative stratigraphic position; Aoverall = 60% is the rejection 

threshold for a series of dates. See text for further details. 
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