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Multivalent Adhesion Molecule 7 Clusters Act as
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Abstract

Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe
enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes
extensive tissue damage and compromises epithelial barrier integrity. We have previously described that Multivalent
Adhesion Molecule (MAM) 7 contributes to initial attachment of V. parahaemolyticus to epithelial cells. Here we show that
the bacterial adhesin, through multivalent interactions between surface-induced adhesin clusters and phosphatidic acid
lipids in the host cell membrane, induces activation of the small GTPase RhoA and actin rearrangements in host cells. In
infection studies with V. parahaemolyticus we further demonstrate that adhesin-triggered activation of the ROCK/LIMK
signaling axis is sufficient to redistribute tight junction proteins, leading to a loss of epithelial barrier function. Taken
together, these findings show an unprecedented mechanism by which an adhesin acts as assembly platform for a host
cellular signaling pathway, which ultimately facilitates breaching of the epithelial barrier by a bacterial pathogen.
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Introduction

Vibrio parahaemolyticus is an emerging food- and waterborne

bacterial pathogen. It is predominantly associated with gastroen-

teritis but occasionally manifests as wound infection [1–3].

Although infections are self-limiting in immunocompetent pa-

tients, in rare cases, usually occurring in patients with an

underlying primary disease, V. parahaemolyticus can rapidly

disseminate into the blood stream and cause septicemia, a life-

threatening condition [4,5]. During gastrointestinal disease, the

pathogen predominantly colonizes the distal small intestine, where

it causes fluid accumulation, extensive tissue damage, a reduction

in epithelial barrier function and inflammation [6]. V. para-
haemolyticus virulence has so far mainly been attributed to

secreted haemolysins (TDH and TRH) as well as a range of

effector proteins secreted into the host cell cytoplasm via two type

III secretion systems (T3SS1 and T3SS2) [7,8]. V. parahaemoly-
ticus-mediated cellular toxicity has been attributed to the effects of

T3SS1 secreted proteins: VopS, VopQ and VPA0450 contribute

to cell rounding, disruption of autophagic turnover and cell lysis,

respectively [9–11]. T3SS2 has been implicated in intestinal

colonization, cellular invasion and enterotoxicity [6,12]. However,

the increase in epithelial permeability seen during infection in vivo
as well as in tissue culture models of infection has not been

attributed to any particular virulence factor [6,13]. Recently, we

have shown that Multivalent Adhesion Molecule (MAM) 7, a

constitutively expressed surface protein, contributes to pathogen

attachment to host cells during the early stages of infection [14]. V.
parahaemolyticus MAM7 recognizes two host surface receptors: it

binds host membrane phosphatidic acid (PA) lipids with high

affinity and uses the extracellular matrix protein fibronectin as a

co-receptor. MAM7 contains seven mammalian cell entry (mce)

domains and each individual domain is capable of binding PA,

while a stretch of at least five repeats is required to interact with

fibronectin. While PA binding is essential for attachment, binding

to fibronectin is dispensable for the interaction but increases the

on-rate of binding [15].

Both PA and fibronectin are important signaling molecules in

their own right and are implicated in key cellular pathways. PAs

make up an average 1–4% of a cell’s total phospholipid content

[16] and are important as precursors for the biogenesis of other

phospholipids, in determining membrane curvature and as

signaling molecules [17–19]. Several PA-binding proteins are

known, including Raf-1, mTOR and SHP-1 [20–22]. As such,

PAs are involved in the regulation of a diverse set of cellular

functions, ranging from metabolism and trafficking to prolifera-

tion. Thus far, studies on PAs have focused on pathways involving

PA localized in the inner leaflet of the plasma membrane and
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cellular organelles, such as the ER. Although PA can also be found

in the outer leaflet of the plasma membrane, it is not characterized

how this pool is generated or how it is linked to cellular functions

[23,24]. It has also been reported that PA generation in cells is

localized to specific regions within the membrane, but the

consequences of this compartmentalization are not well under-

stood [25].

In this study, we found that the clustering of MAM7 molecules

on the bacterial surface and subsequent binding of these clusters to

phosphatidic acid lipids in the host membrane, causes downstream

activation of the small GTPase RhoA. RhoA activation drives

actin rearrangements which ultimately lead to redistribution of

tight junction proteins and a disruption of epithelial integrity. This

breach in the epithelial barrier allows V. parahaemolyticus to

translocate across polarized epithelial layers. Thus, we report for

the first time that a bacterial adhesin, through direct interactions

with host lipid receptors, induces cellular signaling pathways

facilitating epithelial barrier breaching by a bacterial pathogen.

Results

Local clustering of the adhesin MAM7 causes sustained
actin rearrangements in host cells

Multivalent Adhesion Molecule (MAM) 7 present on the outer

membrane of V. parahaemolyticus mediates attachment of bacteria

to host cells [14]. We used V. parahaemolyticus strain CAB4 to

study the infection phenotype in Hela cells. CAB4 is derived from

the well characterized, pathogenic RIMD2210633 strain [26], but

lacks both thermostable hemolysins (DtdhA DtdhS) and does not

express the two type III secretion systems (DexsA DvtrA). Despite

lacking known virulence factors, infection with V. parahaemolyti-
cus CAB4 strain caused pronounced cytoskeletal changes, with

thick strands of filamentous actin forming (Fig. 1A). The

appearance of F-actin fibers was observed almost immediately

upon infection and persisted throughout the course of the

experiment (Fig. 1C). In contrast, no changes in the actin

phenotype were observed in cells infected with CAB4Dvp1611
lacking MAM7 (Fig. 1B). As such, MAM7 is necessary to trigger

the observed actin rearrangements upon infection with V.
parahaemolyticus CAB4. Next, we investigated if MAM7 is

sufficient to cause actin stress fiber formation in Hela cells.

Heterologous surface-expression of V. parahaemolyticus MAM7 in

otherwise non-adherent Escherichia coli is sufficient to mediate

their attachment to a wide range of host cells [14]. Infection of

cells with this recombinant, attaching E. coli strain recapitulated

the same sustained actin rearrangements seen upon infection with

CAB4 (Fig. 1D, F). In contrast, expression of translocation-

deficient MAM7 (MAM7DN1–44) in E. coli lead to only low levels

of attachment and did not trigger actin rearrangements (Fig. 1E).

This demonstrates that V. parahaemolyticus MAM7 is necessary

and sufficient to convey upon non-pathogenic bacteria the ability

to attach to host cells and trigger actin rearrangements. Next,

chemical cross-linking was used to directionally couple purified

MAM7 protein to the surface of fluorescent polymer beads,

thereby mimicking exposure of the adhesin on the bacterial

surface. We used this ‘‘bacteriomimetic’’ system to study the effect

of MAM7 on host cells independent of other bacterial molecules.

Beads directionally coupled to the N-terminus of a protein

containing all seven mammalian cell entry (mce) domains of V.
parahaemolyticus MAM7 (GST-MAM7) attach to host cells and

trigger sustained actin rearrangements, mimicking the phenotype

seen upon infection with CAB4 (Fig. 1G, I). In contrast, beads

coupled to GST alone did not significantly bind to host cells and

caused no actin rearrangements (Fig. 1H). Beads coupled to

protein containing only a single mce domain (MAM1) also failed

to be recruited to the host cell surface in high numbers and did not

cause changes in cytoskeletal organization (Fig. 2A, B). Free,

soluble, uncoupled MAM7 or free GST also did not cause any

cytoskeletal reorganization (Fig. 2C–E). The visually observed

changes in actin phenotype were also recapitulated using

quantitative analysis of cellular G-actin and F-actin contents by

fractionation of lysates, Western Blotting and densitometry (Fig. 1J

and 2F). We conclude that V. parahaemolyticus MAM7, through

multivalent binding of host receptors and when clustered on the

host cell surface, causes sustained rearrangements in the actin

cytoskeleton, visible as bundles of F-actin.

Clustered MAM7 triggers actin rearrangements through
RhoA activation

Actin rearrangements are generally mediated by activation of small

GTPases RhoA, Rac and/or Cdc42. We tested the activation levels

of all three GTPases by studying the fraction of GTP-bound proteins

over time, following binding of MAM7-beads to host cells (Fig. 3).

We observed a sustained activation of RhoA, but not Rac or Cdc42,

which persisted over several hours in the presence of cell-bound

MAM7 beads (Fig. 3A–D). To analyze if actin rearrangements

following MAM7 attachment would be dependent on RhoA, Rac or

Cdc42, we treated cells with Clostridium difficile toxin B (TcdB) or C.
botulinum C3 transferase. TcdB irreversibly deactivates Rho

GTPases by glycosylation of the catalytic threonine residue. C3

selectively inactivates RhoA, B and C but not Rac or Cdc42 by ADP-

ribosylation of asparagine 41 in the effector region [27]. While

untreated cells displayed stress fibers when incubated with fluorescent

MAM7 beads, no actin rearrangements where observed in cells pre-

treated with either TcdB or C3 transferase (Fig. 3E–H). The

observed change in actin phenotype was also confirmed by

quantification of cellular G-actin and F-actin (Fig. 3I). We also

studied the effect of MAM7 binding on cells overexpressing either

dominant negative RhoA, Rac or Cdc42. Expression of RhoAT19N-

GFP abolished actin rearrangements, while expression of either

RacT17N-GFP or Cdc42T17N-GFP had no effect (Fig. 3J–M). We

conclude that binding of multivalent, surface-coupled MAM7 to the

Author Summary

Vibrio parahaemolyticus is a bacterial pathogen which
occurs in marine and estuarine environments. It is a main
cause of gastrointestinal illness following the consumption
of raw or undercooked seafood. In immunocompromised
people, the bacteria can sometimes enter the bloodstream
and cause septicemia, a serious and often fatal condition.
V. parahaemolyticus attaches to host tissues using adhe-
sive proteins. Multivalent Adhesion Molecule (MAM) 7 is an
adhesin which helps the bacteria to hold onto the host
cells early on during infection. It does so by binding two
different molecules on the host, a protein (fibronectin) and
phospholipids called phosphatidic acids. We show that
MAM7 does not only play a role in sticking to host cells. By
forming adhesin clusters on the host surface and binding
to host lipids, it triggers signaling processes in the host.
These include activation of RhoA, an important mediator
of cytoskeletal dynamics. By doing so, MAM7 perturbs
proteins at cellular junctions, which normally maintain the
cells in the gut as a tightly sealed layer protective of
environmental influences. When bacteria use MAM7 to
attach to the intestine, the seals between cells break,
permitting bacteria to cross the barrier and cause infection
of underlying tissues.

Adhesin Clusters as Signaling Platforms for GTPase Activation

PLOS Pathogens | www.plospathogens.org 2 September 2014 | Volume 10 | Issue 9 | e1004421



Figure 1. Clustering of MAM7 adhesin causes sustained actin rearrangements in host cells. Attachment of V. parahaemolyticus CAB4 or E.
coli BL21-MAM7 (A, D, bacteria expressing MAM7 in green) or of polymer beads coupled to GST-MAM7 (G, beads in blue) to Hela cells caused
sustained stress fiber formation (F-actin stained with rhodamine phalloidin, red). Attached objects (bacteria or beads) per cell and % cells with stress
fibers were determined from images taken at indicated timepoints (C, F, I). Data shown are means 6 standard deviation from twelve images (4 frames
from n = 3, representing at least 100 cells/experimental condition). V. parahaemolyticus CAB4DMAM7 or E. coli BL21-MAM7DN1–44 (MAM retained in
the cytoplasm), (B, E, bacteria in green) or of polymer beads coupled to GST only (H, beads in blue) to Hela cells did not cause changes in the actin
phenotype. Images shown are of 1 hour time points and are representative of a set of three experiments. Bar, 10 mm. G-actin (blue) and F-actin (red)
content of cells treated with MAM (M) or controls (C) was quantified at 1 hour post treatment (J) and compared to serum-starved, untreated cells (2)
and cells treated with F-actin enhancing solution (+). Results are means 6 s.e.m. (n = 2) and (*) indicates statistical significance (p,0.05 in a student’s
two-tailed unpaired t-test).
doi:10.1371/journal.ppat.1004421.g001

Figure 2. Multivalent, clustered MAM7 is necessary to trigger actin rearrangements in host cells. Attachment of polymer beads coupled
to GST-MAM1 (1 mce domain from MAM7, A) or attachment of soluble GST (C) or GST-MAM7 (D) did not cause significant changes in actin
phenotype. Attached objects (beads) per cell and % cells with stress fibers were determined from images taken at indicated timepoints (B, E). Data
shown are means 6 standard deviation from twelve images (4 frames from n = 3). Images shown are of 1 hour time points and are representative of a
set of three experiments. Bar, 10 mm. G-actin (blue) and F-actin (red) content of cells treated with MAM (M) or controls (C) was quantified at 1 hour
post treatment. Results are means 6 s.e.m. from duplicate experiments (F).
doi:10.1371/journal.ppat.1004421.g002
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host cell membrane specifically activates RhoA, which in turn triggers

the observed actin rearrangements.

MAM7-mediated actin rearrangements proceed via the
ROCK/LIM-kinase/cofilin signaling axis

Several cellular pathways are involved in relaying signaling

between activated RhoA and the actin cytoskeleton and the

observed actin rearrangements could be a result of either increased

stress fiber formation or a decrease in actin depolymerization [28].

We tested if the MAM-induced RhoA activation and ultimately

actin rearrangements proceed via the Rho-associated serine/

threonine kinase ROCK, a downstream effector of RhoA, by

treating cells with the ROCK inhibitor Y-27632 [29]. Cells

incubated with control beads showed no perturbation in the actin

cytoskeleton, either in the presence or absence of Y-27632 (Fig. 4A,

C, E). In contrast, cells incubated with bead-coupled MAM

displayed stress fibers but this phenotype was almost completely

abolished in Y-27632 treated cells (Fig. 4B, D, E). These findings

were recapitulated when we quantified the cellular G-actin and F-

actin content under identical experimental conditions (Fig. 4F).

Next, we tested whether MAM-induced ROCK activation takes

place upstream or downstream of RhoA. We analyzed RhoA

activation in the presence and absence of MAM beads, either on

untreated or Y-27632 treated cells. These data show that when

ROCK is inhibited, even though MAM-induced stress fiber

formation is abolished, RhoA activation levels remain high (Fig. 4G).

Figure 3. Clustered MAM7 triggeres actin rearrangements through RhoA activation. Following incubation of Hela cells with bead-MAM7,
RhoA-GTP levels were determined and compared to total RhoA levels either immediately, 30 min, 1, 2, 3, 4 and 5 hours following bead attachment
(A). RhoA activation in percent (B) was determined from ratios of band intensities of RhoA-GTP/total RhoA, with the positive control (GTPcS-
incubated sample) set to 100%. Negative control (2) were cells incubated with bead-coupled GST for 5 hours. Results are means 6 standard
deviation, n = 3. Data points significantly different from the negative control (p,0.05 as determined by two-tailed unpaired student’s t-test) are
indicated (*). Experiments described in (A) were repeated to detect activated and total Rac (C) and Cdc42 (D). To test whether GTPase inactivation
would affect actin phenotypes, cells were either left untreated (E), treated with TcdB (F) or cell-permeable C3 transferase (G) prior to attachment of
bead-MAM7. % cells with stress fibers (H) were determined from image analysis following experiments with untreated (cont), TcdB- or C3-treated cells
and attachment of both bead coupled GST-MAM7 (MAM+, red bars) or coupled GST (MAM2, black bars) and data are means 6 standard deviation
from 12 images (4 frames from n = 3). F-actin/G-actin content was determined from the same samples (C, cont. beads; M, MAM beads) (I). Results are
means 6 s.e.m. from duplicate experiments and significantly different data are marked (*). Cells transfected with DN EGFP-RhoA (J), DN EGFP-Rac (K)
or DN EGFP-DNCdc42 (L) were attached to bead-coupled GST-MAM7 and cells stained with rhodamine-phalloidin. Images shown are of 1 hour post
bead attachment and are representative of a set of three experiments. Bar, 10 mm. % cells with stress fibers (M) were determined from image analysis
following experiments on cells transfected with pcDNA3-EGFP (cont), DN RhoA, DN Rac or DN Cdc42 and attachment of both bead coupled GST-
MAM7 (MAM+, red bars) or coupled GST (MAM2, black bars) and data shown are means 6 standard deviation from 12 images (4 frames from n = 3).
doi:10.1371/journal.ppat.1004421.g003
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We thus conclude that MAM-induced ROCK activation occurs

downstream of RhoA.

Next, we tested the activation of LIM kinase (LIMK) and cofilin,

two key signaling proteins downstream of ROCK. A significant

fraction of LIMK was phosphorylated in the presence of MAM-

beads, but the p-LIMK level was much reduced if cells were pre-

treated with Y-27632 prior to MAM7 bead adhesion. Incubation

with either control beads alone or in combination with Y-27632

treatment did not cause significant LIMK phosphorylation

(Fig. 4H). LIMK activation causes phosphorylation of cofilin and

thus inhibition of its actin depolymerization activity. We observed

an increase in p-cofilin in cells with attached MAM-beads, which

was abolished by Y-27632 treatment prior to attachment.

Incubation with either control beads alone or following Y-27632

treatment did not cause significant changes in p-cofilin levels

(Fig. 4I). In addition, treatment of cells with LIMK inhibitor prior

to MAM adhesion lead to a loss of the actin phenotype and

concurrent loss of increased F-actin contents (Fig. 4F). We conclude

that MAM-induced actin rearrangements proceed via the RhoA/

ROCK/LIM-K/cofilin pathway and are the result of abrogated

actin depolymerization rather than de novo polymerization.

RhoA activation depends on MAM7 interaction with
phosphatidic acids and is independent of the co-receptor
fibronectin

We have previously shown that MAM7 interacts with two types

of receptors in the host cell membrane. Each of the seven mce

domains within MAM7 is capable of interacting with a phospha-

tidic acid phospholipid molecule, thereby mediating high affinity

binding of bacteria to host cells. Recognition of fibronectin is

achieved by a repeat of at least five mce domains and while this

interaction is dispensable for attachment, it increases the on-rate of

bacterial binding to host cells [15]. We asked if the observed actin

rearrangements are a result of MAM binding to fibronectin or

phosphatidic acid receptors on host cells, or both. We made MAM

attachment to host cells independent of binding to fibronectin by

blocking the MAM binding epitope on fibronectin with an

antibody [15]. This way, binding of MAM7 to host cells was only

mediated by phosphatidic acid receptors. Cells either pre-treated

with a-Fn antibodies or non-specific control antibodies were

incubated with MAM7 beads or control beads. Following

incubation with MAM7 beads, stress fibers were observed in both

cells treated with control antibodies (+Fn), or a-Fn antibodies (2

Fn), (Fig. 5A–C). In contrast, no actin changes were observed in

cells following treatment with either antibody followed by control

beads (Fig. 5C). As previously described, uncoupling MAM7

binding from its co-receptor fibronectin did not change the overall

number of beads bound per cell if sufficient time was allowed for

attachment (Fig. 5D). The interaction between fibronectin and

MAM has been mapped to the N-terminal region of fibronectin,

which is an epitope commonly exploited by bacterial adhesins for

binding [30]. Both Staphylococcus aureus fibronectin binding

protein A (FnBPA) and Streptococcus pyogenes protein F1 bind the

N-terminal part of fibronectin with high affinity [31,32]. Thus, we

tested whether portions of these two adhesins sharing the same

binding epitope with MAM would cause similar actin rearrange-

Figure 4. MAM-mediated actin rearrangements proceed via the ROCK/LIMK/cofilin signaling axis. Hela cells were incubated with bead-
coupled GST (A, C) or GST-MAM7 (B, D) for 1 hour following mock treatment (A,B) or treatment of cells with 10 mM Y-27632 for 60 minutes (C, D) and
F-actin stained with rhodamine-phalloidin (red). % cells with stress fibers (E) were determined from image analysis following mock treatment (NI) or
Y-27632 treatment of cells and attachment of bead coupled to GST-MAM7 (+MAM, red bars) or coupled to GST (2MAM, black bars). Data shown are
means 6 standard deviation from twelve images (4 frames from n = 3). Images are representative of a set of three experiments. Bar, 10 mm. F-actin/G-
actin content was determined for the same experimental conditions (C, cont. beads; M, MAM beads), (F). Results are means 6 s.e.m. from duplicate
experiments. RhoA activation levels were determined under the same experimental conditions and data significantly different from the negative
control are marked (*), (G). % activation was determined by densitometry and samples statistically significantly different from the negative control
(GDP-lysate, 2) are indicated (*). Levels of p-LIMK and total LIMK (H) or p-cofilin and total cofilin (I) were determined by Western Blotting and
densitometry. % activation was determined as ratios of band intensities from phosphorylated and total protein and normalized to mock treated cells
attached to bead coupled GST-MAM7 (100%). Data shown are means 6 standard deviation from at least three independent experiments and data
statistically significantly different from the negative control (student’s unpaired two-tailed t-test, p,0.05) are indicated (*).
doi:10.1371/journal.ppat.1004421.g004
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ments to those observed with MAM7. We incubated cells with

beads coupled to the fibronectin-binding region of either FnBPA

(FnBR1-11) or F1 (FUD), as previously described [33]. Although

both preparations bound to cells with high efficiency, neither

caused stress fiber formation (Fig. 5E–H). Taken together, these

findings strongly suggest that fibronectin is not involved in the

observed signaling pathway between MAM7, RhoA and actin. To

see whether changes in the membrane lipid composition would

impact MAM’s ability to trigger RhoA activation, we treated cells

with phospholipase C (PLC). MAM7 beads were added to cells

either immediately or up to five hours following PLC treatment

and subsequent enzyme removal, and levels of beads per cell as

well as RhoA activation were measured. In untreated cells,

approximately 23 beads were bound per cell (Fig. 5I, red bar). No

bead binding was observed if cells were continuously exposed to

PLC, since the interaction with fibronectin alone is insufficient to

mediate binding (Fig. 5I, blue bars). If PLC was removed, the

interaction between lipid receptors and MAM7, and thus bead

binding, was initially completely abolished but was gradually

recovered until normal binding levels were regained after four

hours of recovery (Fig. 5I, black bars). A similar time course was

established for RhoA activation upon MAM bead attachment,

with full GTPase activation recovered four hours after removal of

PLC (Fig. 5J). We conclude that the MAM7 co-receptor

fibronectin is dispensable not just for MAM7 binding, but also

for the subsequent activation of RhoA and actin rearrangements

caused by adhesion. The observed signaling cascade thus depends

on the interaction of multivalent, surface-clustered MAM7

adhesins with phosphatidic acid lipids in the host cell membrane.

MAM adhesion is necessary and sufficient to disrupt
epithelial barrier function and promote bacterial
transmigration

Vibrio parahaemolyticus mostly causes gastroenteritis and on

rare occasions it can lead to systemic disease in immunocompro-

mised patients. To better reflect the in vivo situation, we studied

the effect of MAM on polarized intestinal epithelial (Caco-2) cells.

Differentiated Caco-2 monolayers are a good model of the

epithelium in the small intestine, the main site of V. parahaemo-
lyticus infection. When grown on permeable supports, Caco-2 cells

form monolayers with well differentiated brush border microvilli

and properties resembling those of the small intestinal epithelium

[34]. First, we studied the localization of MAM7 on polarized cell

layers. MAM7 exclusively bound to the apical side of the epithelial

layer, with the protein being enriched at cellular junctions

(Fig. 6A). No binding was observed when MAM protein was

added to the basolateral side (Fig. 6B). Similar to the effects seen in

Hela cells, MAM-coupled beads and V. parahaemolyticus CAB4,

but not a MAM deletion strain (CAB4DMAM), caused a

significant increase in RhoA activation compared to untreated

cells (Fig. 6C). Because MAM7 was enriched at cell junctions and

RhoA activation is capable of affecting the distribution of tight

junction proteins, we studied the localization of tight junction

markers during infection with V. parahaemolyticus. Apical

infection with CAB4 caused a re-distribution of the tight junction

markers occludin and zonula occludens protein 1 (ZO-1) (Fig. 6D,

G). In contrast, the distribution of both tight junction proteins

remained unchanged when cells were infected with CAB4 from

the basolateral side (Fig. 6E, H) or apically with the MAM

knockout strain CAB4DMAM (Fig. 6F, I).

Next, we asked if re-distribution of tight junction proteins

during infection would affect epithelial barrier function. When

CAB4 was added to the apical surface of a differentiated layer, a

marked decrease in transepithelial electrical resistance (TER) was

observed approximately three hours post infection. This change

was mediated via ROCK/LIMK activation, since treatment of

cells with either Y-27632 or LIMK inhibitor abolished the CAB4-

mediated decrease in TER (Fig. 6J). Similarly, no significant

decrease in TER was observed up to seven hours post infection

with either CAB4DMAM added apically or CAB4 added to the

basolateral side of the epithelium (Fig. 6M).

We also investigated whether the disruption of cell-cell junctions

was sufficient to allow for bacterial transmigration. Polarized cells

were infected with either CAB4 or CAB4DMAM and bacterial

titers in the opposing compartment were determined either

immediately or up to eight hours post infection. When either

CAB4 or CAB4DMAM were added to the basolateral side, no

bacteria were recovered on the apical side. In contrast, CAB4 was

recovered from the basolateral side following infection from the

apical side. Bacterial numbers on the basolateral side increased

significantly 2.5 hours post infection and continued to increase

until 6.5 hours post infection, reaching approximately 1% of the

initial infecting population. In epithelial layers apically infected

with CAB4DMAM, no bacteria were detected on the basolateral

side (Fig. 6K). The loss of MAM could be compensated either by

the expression of MAM in trans or by treatment of cells with bead-

bound MAM, but not with control beads (Fig. 6L). We concluded

that MAM selectively binds to the apical side of polarized

intestinal epithelial cells, causing a re-distribution of tight junction

proteins, disruption of barrier integrity and bacterial transmigra-

tion.

MAM7 function accelerates T3SS1-mediated lysis of
polarized epithelial cells

Finally, we asked if the epithelial disruption caused by MAM-

mediated adhesion would contribute to infection in a virulent

strain. Polarized intestinal epithelium was infected with the

virulent strain POR1 or POR1DMAM from the apical or

basolateral side. Infection with POR1 apically lead to cytotoxicity

and rapid cell lysis, with almost complete cell death five hours post

infection (Fig. 7A). The cytotoxicity profile was significantly

delayed upon infection with POR1DMAM and cell death reached

only approximately 70% even seven hours post infection. When

cells were infected with either POR1 or POR1DMAM from the

basolateral side, no significant increase in cytotoxicity was

observed over the course of the experiment (up to seven hours

post infection). POR1 contains the T3SS effector VopS, which

causes RhoA inhibition by irreversible AMPylation of a threonine

residue in the switch I region [9]. Thus, we investigated the

contribution of MAM to the overall RhoA activation levels in

polarized Caco-2 cells infected with the virulent strain. At 2 hours

post infection, prior to the onset of cell lysis, RhoA activity was

completely abolished in POR1 infected cells. In contrast, RhoA

was highly activated in POR1DVopS. An intermediate level of

RhoA activation was observed in cells infected with POR1DMAM

(Fig. 7B). We also analyzed the G-actin and F-actin content of

polarized Caco-2 cells 2 hours post infection. Within 2 hours,

POR1 infection lead to a drop in F-actin content compared to

untreated cells, which was mediated by the activity of VopS. In the

absence of MAM, or in the presence of ROCK- or LIMK

inhibitors, the F-actin content was higher compared to POR1

infected cells (Fig. 7C). Finally, we measured the transepithelial

resistance in Caco-2 monolayers infected with the virulent strain.

POR1 caused a rapid decrease of TER, which was markedly

slowed by treatment of cells with Y-27632 or LIMK inhibitor.

Similarly, both POR1DMAM and POR1DVopS showed a slight

delay in depolarization (Fig. 7D).
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Discussion

Previously, we reported that V. parahaemolyticus Multivalent

Adhesion Molecule (MAM) 7 and several of its homologs from

other Gram-negative enteric pathogens mediate initial attachment

of bacteria to host cells [14]. In this study, we demonstrated that

clusters of multivalent MAM molecules, by binding to the host cell

membrane, facilitate activation of the host small GTPase RhoA,

which in turn leads to actin rearrangements. Clustering of MAMs

is achieved by nature, through display of multiple adhesion

molecules on the bacterial outer membrane [14], but can be

mimicked by coupling recombinant MAM molecules to a polymer

bead with roughly the same dimensions as a bacterium. Soluble

MAM failed to achieve the same effect on host cell signaling.

MAMs interact with host cells via two cellular receptors, the

protein fibronectin and the phosphatidic acid (PA) phospholipids.

While the former is a well-characterized pathogen receptor

[30,35,36], direct binding of a bacterial adhesin to a host cell

lipid is a new paradigm of host-pathogen interaction. Over recent

years, manipulation of cellular lipids by pathogens has been an

emerging field of study, and it has become evident that host

cellular lipids are often a primary target of bacterial virulence

factors [11,37,38]. Herein, we showed that MAM’s impact on

RhoA activation is mediated through its interaction with

phosphatidic acid lipids in the host membrane and that its co-

receptor fibronectin is dispensable for its function as a signaling

effector. Taken together, these findings suggest a mechanism

whereby the interaction of clustered MAM adhesins with host

membrane lipids causes rearrangements of the latter and that this

acts as a signal leading to RhoA activation. However, direct

observation of such hypothesized rearrangements of phosphatidic

acid molecules within the host membrane on the nanoscale is not

within the scope of our studies but is an intriguing possibility and

something we are currently investigating.

Figure 5. RhoA activation depends on MAM binding to phosphatidic acids and is independent of the co-receptor fibronectin. Hela
cells were incubated with bead-coupled GST-MAM7 for 1 hour either without (A) or with (B) prior masking of MAM binding epitopes on fibronectin
with antibodies and F-actin stain with rhodamine-phalloidin. % cells with stress fibers (C) were determined from image analysis following treatment
with non-specific antibody (+Fn) or treatment of cells with a-Fn antibody, thereby masking the MAM binding epitope on fibronectin (2Fn) and
attachment of bead coupled to GST-MAM7 (MAM7) or coupled to GST (cont). Number of attached beads per cells was unchanged by treatment with
a-Fn compared to control antibody (D). Hela cells were incubated with bead-coupled FnBPA FnBR1-11 (E) or F1 FUD (F) and stained with rhodamine-
phalloidine (red). % cells with stress fibers (G) and number of attached beads per cell (H) were determined from image analysis following both
treatments. Data shown are means 6 standard deviation from twelve images (4 frames from n = 3). Images shown are of 1 hour time points and are
representative of a set of three experiments. Bar, 10 mm. Beads attached per cell (I) and RhoA activation (J) were determined either with no prior
treatment of cells (2, red bar), under constant treatment with PLC (blue bars) or after treatment of cells with PLC, removal of PLC and attachment of
bead-coupled GST-MAM7 for the indicated time points (0–5 hours post recovery, black bars). RhoA activation was determined as the ratio of band
intensities for RhoA-GTP and total RhoA and normalized to samples without PLC treatment and following 5 hours of attachment of GST-MAM7 beads
(2, 100% activation). Data statistically significantly different from t = 0 (I) or the negative control (J) as per student’s unpaired two-tailed t-test, p,
0.05, are indicated (*).
doi:10.1371/journal.ppat.1004421.g005
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We have elucidated the signaling pathway downstream of RhoA

and show the MAM-triggered signal is relayed from activated RhoA,

via the Rho-associated serine/threonine kinase ROCK and LIM

kinase, to result in phosphorylation of cofilin. Cofilin is an actin-

binding protein which mediates actin depolymerization [39]. Its

interaction with actin and thus its depolymerization activity is

disrupted by phosphorylation, resulting in a net stabilizing effect on

filamentous actin and apparent increase in actin stress fibers. Although

a large part of our experiments was performed on Hela cells because

changes in the actin phenotype following serum starvation are visually

easier discernible in this cell type, we show that the MAM-mediated

effect on actin also proceeds via ROCK and LIMK activation in

polarized intestinal epithelial cells, a more relevant system for studies

on V. parahaemolyticus. Since we observe MAM-induced RhoA

activation also in polarized epithelial cells, we hypothesize that this

RhoA activation facilitates subsequent activation of the ROCK/

LIMK/cofilin signaling axis, however we cannot show whether RhoA

activation is required in this model, since RhoA inactivation itself leads

to increased transepithelial permeability [40].

In the polarized epithelial system, MAM7 selectively attached to

the apical side of the layer and attachment caused a marked

redistribution of tight junction proteins. A similar phenotype has

been described to occur following infection of epithelial cells with

other pathogens, such as enteropathogenic E. coli (EPEC) or the

protozoan parasite Giardia lamblia. With EPEC infection,

paracellular permeability also resulted from a redistribution of

tight junction proteins upon RhoA activation, although in that

case RhoA activation has been largely attributed to the activities of

type III system-secreted effectors [41,42]. In G. lamblia, barrier

failure was attributed to apoptosis of enterocyes [43]. Activation of

RhoA through the establishment of a signaling complex consisting

of bacterial adhesin clusters and host membrane lipids on the host

cell surface is, to our knowledge, a previously unrecognized

strategy to achieve epithelial barrier disruption.

We demonstrated that the action of MAM7 causes epithelial

barrier disruption, as evidenced both by a decrease in transepi-

thelial resistance and the ability of bacteria to transmigrate to the

basolateral side of the epithelium. It has previously been shown

that CAB4 is unable to invade epithelial cells [12], so this is likely

the result of bacteria moving through compromised cell-cell

junctions. It has been shown previously that epithelial integrity is

compromised following V. parahaemolyticus infection, both in

Figure 6. MAM adhesion is necessary and sufficient to disrupt epithelial barrier function and promote bacterial transmigration.
Purified GST-MAM7 was added to the apical (ap, A) or basolateral (bl, B) compartment of polarized Caco-2 layers and incubated for 2 hours. Samples
were imaged by immunofluorescence microscopy using anti-GST and FITC-labeled secondary antibodies. Images shown are representative of a set of
twelve images (4 frames from n = 3). Polarized Caco-2 layers were either left untreated or incubated with bead-coupled GST-MAM7 (MAM-bd), CAB4
or CAB4DMAM for two hours and Rho activation levels were determined as ratio of band intensities from RhoA-GTP and total RhoA (and normalized
to untreated layers, 100% activation, C). Results significantly different from untreated are marked (*, n = 3). Polarized Caco-2 layers were infected with
CAB4 from the apical side (D, G), CAB4 from the basolateral side (E, H) or CAB4DMAM from the apical side (F, I). Cells were immunostained with anti-
occludin (D–F) or a-ZO-1 (G–I) and FITC-labeled secondary antibody. Images shown are representative of a set of 12 images (4 frames from n = 3).
Transepithelial electrical resistance (TER) was measured following infection of polarized Caco-2 layers with CAB4 without (NT, white circles) or with
prior treatment of cells with Y-27632 (black squares) or LIMKi (black triangles), (J). Bacterial recovery from the basolateral compartment following
apical infection or from the apical compartment after 8 hours of basolateral infection (BL) was determined for CAB4 (black bars) or CAB4DMAM (blue
bars) added at an MOI of 100 (K). Bacterial recovery from the basolateral compartment following apical infection for the indicated time points with
CAB4DMAM reconstituted with a plasmid expressing MAM7 (black bars) or infected with a mixture of CAB4DMAM and bead-coupled GST-MAM7
(blue) or bead-coupled GST only (green), (L). TER was measured on polarized Caco-2 layers infected with CAB4 apically (black circles), CAB4
basolaterally (black squares) or CAB4DMAM apically (white circles) and normalized to basal TER prior to infection (100%), (M). Data shown in J-M are
means 6 standard deviation (n = 3).
doi:10.1371/journal.ppat.1004421.g006
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cultured polarized epithelial cells and in vivo. Animal infection

models have shown increased transepithelial permeability using

fluorescent dextran as a tracer, but the effect was not attributed to

any particular virulence factor [6]. Earlier experiments on

polarized Caco-2 cells demonstrated a similar effect on epithelial

integrity and ruled out TDH and TRH toxins as the culprit [13].

A comparison between V. parahaemolyticus clinical isolates and

environmental strains implicated T3SS2 in transepithelial

permeability. However, no whole genome sequences are available

for the strains used in this study and we therefore do not know if

they encode for a MAM homolog and if so, to what extent it

would share sequence similarity to RIMD2210633 MAM7

(vp1611) [44]. More recent studies on Caco-2 and mixed M

cell-like co-cultures demonstrated that T3SS1 does not signifi-

cantly contribute to translocation, while T3SS2 is dispensable but

has a moderately enhancing effect on translocation in a

RIMD2210633 background [45]. Herein we show that MAM7

is sufficient to cause barrier disruption in cultured polarized

epithelium. In the context of a T3SS-competent, virulent strain,

MAM induces transepithelial permeability and depolarization of

the epithelium early during infection. Since MAM is constitu-

tively expressed and present at the early stages of infection, its

effect takes hold almost immediately and RhoA activation is

detectable as early as 30 minutes post infection (the earliest time

point measured here). The resulting depolarization and disrup-

tion of cell-cell junctions leads to an increase in host cell surface

available for translocation of type III secreted bacterial effectors.

Overall, this mechanism accelerates effector-mediated functional

changes in host cells, such as VopS-mediated irreversible RhoA

inactivation and concomitant actin depolymerization, thus

speeding up infection. These findings strongly indicate experi-

ments comparing the effect of wild type and MAM knockout

strains in an animal model and this should be the next step to

show if indeed MAM contributes to transepithelial permeability

and infection in vivo.

Overall, the study we present here demonstrated that the

contribution of Vibrio parahaemolyticus MAM7 to the pathogen’s

infection profile is not limited to its function in early bacterial

attachment. By establishing signaling complexes consisting of

clustered MAM adhesins and host membrane lipid receptors on

the host cell surface, it additionally acts as an effector of host

cellular GTPase signaling and its action culminates in breaching of

the epithelial barrier. This is, to our knowledge, a previously

unrecognized strategy by which a bacterial pathogen disrupts

intestinal epithelial function and the detailed molecular mecha-

nism of how this is achieved certainly deserves our further

investigation.

Materials and Methods

Bacterial strains and growth conditions
The construction of BL21-MAM7, BL21-MAMDN1–44, CAB4,

POR1, POR1DMAM (POR1Dvp1611) and POR1DVopS has

been described elsewhere [9,12,14]. The V. parahaemolyticus
MAM deletion strain CAB4Dvp1611 was constructed using the

same method and same vector construct (pDM4 containing

regions 1 kb up- and downstream of vp1611) described in these

references. Strains were grown on MLB (V. parahaemolyticus) or

LB agar (E. coli), with 100 mg/ml of kanamycin or ampicillin

added for selection where required.

Figure 7. MAM function accelerates T3SS1-mediated lysis of polarized epithelial cells. Cell lysis (A) was determined following infection of
Caco-2 layers with POR1 apically (black circles) or basolaterally (black squares) or POR1DMAM apically (white circles) or basolaterally (white squares).
Results were normalized to Triton-induced cell lysis (100%) and uninfected cells (0%). Arrow (2 hrs) indicates time point chosen for experiments
shown in (B) and (C). Data shown are means 6 standard deviation (n = 3). Polarized Caco-2 layers were infected with POR1 (P.1), POR1DMAM or
POR1DVopS for 2 hrs and Rho activation levels were determined as the ratio of band intensities from RhoA-GTP and total RhoA (and normalized to
GTPcS-treated lysate, (+, 100% activation). Neg. control (2): GDP-treated lysate. Statistical significance is indicated (*, n = 2), (B). F-actin and G-actin
content was determined in polarized Caco-2 monolayers after serum starvation (2), treatment with F-actin enhancing solution (+), infection with
POR1, POR1 after treatment with Y-27632 (P.1+Y), with LIMK inhibitor (P.1+LIMKi) or infected with POR1DMAM or POR1DVopS for 2 hrs, or on
untreated cells (U). Results are means 6 s.e.m. (n = 2), (C). Transepithelial electrical resistance (TER) was measured on polarized Caco-2 layers infected
with POR1, POR1 after treatment with Y-27632 or after treatment with LIMK inhibitor or infected with POR1DMAM or POR1DVopS (D) and normalized
to basal TER prior to infection (100%). Results are means 6 standard deviation (n = 3).
doi:10.1371/journal.ppat.1004421.g007
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Cell culture conditions and polarization of epithelial cells
HeLa and Caco-2 epithelial cell lines were cultured at 37uC and

under 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM)

containing 10% heat-inactivated fetal bovine serum, 4500 mg/L

glucose, 0.5 mM L-glutamine, 100 units/ml penicillin and 20 mg/

ml streptomycin. For GTPase activation and microscopy assays,

cells were serum-starved for 40 hours prior to treatment. For

infection experiments, DMEM with no added antibiotics was used.

For experiments on polarized Caco-2 cells, cells were seeded on

polycarbonate 3.0 mm pore size transwell filters (Costar) at 200000

cells/ml. Cells reached confluency after approximately 5–6 days,

at which point several transepithelial resistance (TER) measure-

ments were taken to check the integrity of the layer and establish

baseline measurements. TER measurements before and during

infection experiments were taken with a Millicell-ERS resistance

apparatus (Millipore).

Chemical coupling of proteins to beads
Expression and purification procedures for recombinant pro-

teins have been described in detail elsewhere (see [14] for GST-

MAM7 [15], for GST-mce1 and [33] for GST-FnBPA FnBR1-11

and F1 FUD constructs). Purified proteins were immobilized on

amine modified fluorescent blue polystyrene beads with a mean

diameter of 2 mm (Sigma) using Sulfo-SMPB (sulfosuccinimidyl 4-

[p-maleimidophenyl]butyrate) cross-linking under reducing con-

ditions, as outlined in the manufacturer’s protocol (Pierce). Bead-

coupled proteins were added to experiments to give a final

concentration of 500 nM immobilized protein and a surface

density of 1.56105 molecules per bead (giving a spacing of

approximately 57 nm).

Attachment and infection experiments
Tissue culture cells were washed with PBS (phosphate-buffered

saline) prior to the addition of bacteria in tissue culture medium

without antibiotics. Bacteria were added to give a multiplicity of

infection (MOI) of 100, except for POR1 and derivatives, where

an MOI of 10 was used. Plates were centrifuged (10006g, 22uC,

5 minutes) prior to incubation at 37uC for 30 minutes to eight

hours, depending on the experiment. To uncouple MAM binding

from fibronectin or phosphatidic acid, respectively, cultured cells

were incubated with anti-Fn antibody (Sigma, 50 mg/ml in PBS)

or treated with 50 mg/ml phospholipase C (Sigma) in PBS for

15 min prior to infection, as previously described [15]. For

enumeration of bacteria, samples were removed at time points as

indicated and were serially diluted, plated on agar plates,

incubated at 37uC for sixteen hours and CFU counts determined

the following day. For cytoxicity assays, 200 ml of culture

supernatant was removed in triplicate from each well at timepoints

as indicated, centrifuged (10006g, 22uC, 5 minutes), and 100 ml of

the supernatant transferred to a fresh 96-well plate for assays. To

quantitate cell lysis, the amount of lactate dehydrogenase (LDH)

released into the culture medium was determined using the LDH

cytotoxicity detection kit (Takara) according to the manufacturer’s

instructions. Results are presented in % lysis, relative to negative

(uninfected) and positive (Triton X-100 lysed cells) controls.

Transfection and immunofluorescence microcopy
Cells were transfected with pcDNA3 containing either EGFP,

EGFP-RhoAT19N, EGFP-RacAT17N or EGFP-Cdc42T17N

using Fugene HD (Roche) transfection reagent according to the

manufacturer’s protocol. For microscopy, cells were fixed with

3.2% formaldehyde, permeabilized with 0.1% Triton X-100 and

stained with rhodamine-phalloidin to visualize F-actin and SYTO-

13 to visualize DNA as indicated. For immunofluorescence

microscopy, we used a-GST, a-occludin and a-ZO-1 antibodies

(Sigma) diluted 1:500, followed by FITC-labeled a-rabbit antibody

(Sigma) at a 1:1000 dilution. Images were taken either on a Zeiss

LSM 510 scanning confocal microscope or a Nikon Eclipse Ti

fluorescence microscope and images were prepared using ImageJ

and Corel Draw X5. For quantification of the F-actin phenotype,

the total number of cells as well as number of cells containing stress

fibers, were enumerated. Some fields contained cells displaying

cortical actin, however this phenotype was observed across

experiments and was independent of MAM adhesion. Thus, these

cells were not counted as positive. Data shown are means 6

standard deviation from twelve images (four frames from triplicate

experiments, representing at least 100 cells/experimental condi-

tion).

Western blotting and antibodies
Proteins were separated by SDS-PAGE and transferred onto

nitrocellulose membrane. Membranes were blocked with 5% BSA

in TBS-T (Tris-buffered saline containing 0.05% Tween 20) for

1 hour at 22uC. Membranes were probed with primary antibodies

(against LIMK, p-LIMK, cofilin, or p-cofilin, all Santa Cruz

Biotechnology) diluted 1:1000 into blocking buffer for 1 hour at

22uC. After three washes with TBS-T, membranes were incubated

with anti-mouse HRP (horseradish peroxidase)-conjugated sec-

ondary antibody (GE Healthcare) diluted 1:5000 into blocking

buffer for 1 hour at 22uC. Membranes were washed three more

times with TBS-T and proteins were detected using the ECL plus

detection system (GE Healthcare) and a Gel Doc XR imager. Bio

Rad Quantity One software was used for densitometry.

G-actin/F-actin In Vivo Assay
Ratios of globular (G-actin) to filamentous (F-actin) in cultured,

serum-starved cells were determined using the G-actin/F-actin In

Vivo Assay Kit (Cytoskeleton Inc.) as described in the manufac-

turer’s protocol. Serum-starved, untreated cells (negative control)

and cells treated with F-actin enhancing solution (positive control)

were analyzed alongside experimental samples (MAM-treated and

controls, as described in the figure legends). G-actin and F-actin

levels were determined by Western Blotting and were quantified

by densitometry. Results shown are means 6 s.e.m. from two

independent experiments.

GTPase activation assays
Following infection or incubation with beads, cells were washed

and collected by scraping into GTPase lysis buffer (20 mM Tris

HCl pH 7.5, 10 mM MgCl2, 150 mM NaCl, 1% Triton X-100.

Lysates were homogenized and cleared by centrifugation

(13000 rpm, 20 min). 500 mg of cleared lysates were added to

30 mg of GST-PAK PBD bound to glutathione agarose beads and

incubated for 1 hour at 4uC. Samples were separated by SDS-

PAGE and immunoblotted with a-Cdc42 or a-Rac antibodies

(Sigma) and compared to total GTPase levels detected in cell

lysates. Activated RhoA was pulled down with the use of a RhoA

activation kit (Cytoskeleton) according to the manufacturer’s

instructions. Total and GTP-bound RhoA was detected following

SDS-PAGE separation and Western Blotting using a-RhoA

antibody (Sigma).

Inhibition of Rho GTPase activity
To study cellular phenotypes independent of GTPase activa-

tion, cells were treated with either Clostridium difficile toxin B

(TcdB) or C3 transferase to irreversibly inactivate either RhoA,
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Rac and Cdc42 or RhoA, respectively. Cells were treated wither

with 200 ng/ml TcdB (List Biologicals) or 1 mg/ml cell-permeable

C3 (Cytoskeleton) for 4 hours. Attachment experiments were

carried out immediately after toxin treatment.
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